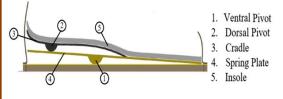


The Kingetics Shoe Insole

Edemanwan B. Ephraim¹, Corey A. Pew¹, Steven A. King², and Richard R. Neptune¹ ¹Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX ²Kingetics, LLC, Maui, HI

Introduction

- Lower limb overuse injuries are a common problem for military service members. In the U.S. army, 82% of all injuries are attributed to overuse which costs the U.S. an estimated \$20 billion annually. [1]
- Custom designed shoe insoles are commonly recommended to prevent or impede the development of overuse injuries. [2]
- The Kingetics orthotic shoe insole (Fig. 1) utilizes energy storage and return through an embedded spring and lever system.



Dorsal View

Ventral View

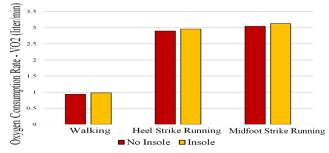
Figure 1: Images of Kingetics insole (right foot).

Side View


Figure 2: Schematic of the Kingetics insole [3].

Purpose

To determine if the Kingetics insole reduces vertical ground reaction forces (GRFs) during walking and heel strike running, and if it improves metabolic efficiency by decreasing oxygen consumption rate.


Methods

- To determine GRFs, subject walked (at 1 m/s) and then ran (at 2 m/s) using two styles—heel strike and midfoot strike—on force-sensing treadmill in regular athletic shoes, and then in shoes fit with the Kingetics orthotic insole.
- Force data was analyzed to find peak vertical GRFs.
- To determine metabolic cost, the subject repeated the previous trials (walking at 1.12 m/s and running at 3.13 m/s) on treadmill while metabolic cost measurements were made.
- Oxygen consumption rate at steady state was calculated and then averaged for each trial.
- For both measurements, unpaired t-tests were performed to determine if there were significant differences between the different shoes and running styles.

Figure 3: Average vertical, peak force experienced by each foot during trials. The Kingetics insole significantly reduced GRFs only during heel strike running.

Results (continued)

Figure 4: Average oxygen consumption rate subject experienced during trials. A difference of 150-200 liter/min or above indicates a considerable impact. No trial exhibited a difference of this amount.

Discussion and Conclusion

- Vertical GRFs on left and right feet showed significant differences and were analyzed individually.
- Heel strike running exhibited a decrease in vertical GRFs with the Kingetics insole while during walking they remained fairly constant.
- Contact forces with the ground during walking were most likely not large enough to store the amount of energy in the spring plate needed to decrease the vertical GRFs.
- During heel strike running, vertical GRFs decreased by 7.2% on the left foot and by 11.1% on the right due to Kingetics insole.
- Oxygen consumption rates did not change when using the insole.
- Optimizing the Kingetics pivots may improve its function.

References and Acknowledgements

 Malka I, et al. *Military Medicine* **183**, 196-197, 2018.
Nagano H and Begg R.K. *Sensors* **18**, 196-200, 2018.
King S and Hewitt P. U.S. *Patent No.* 8,353,968 **4**, 2013. This research experience was funded by the Louis Stokes Alliances for Minority Participation. Thanks to: Kingetics for supplying testing materials, Dr. James Sulzer & Tunc Akbas for helping conduct GRF trials, and Dr. Ed Coyle and Emre Vardarli for helping conduct metabolic tests.