Materials Selection/Injection Molding Tooling Design for an Advanced Foot Orthotic – Phase 3

NDSU NORTH DAKOTA STATE UNIVERSITY

Cole Kramer, Gabe Lothspeich, Paula Pickett, Dylan Ruzicka Mentor: Dr. Ulven Sponsor: Dr. King from Kingetics, LLC

> SPRING 2022 ME 461 – FALL 2019

What is Kingetics, LLC?

 Owner/Founder: Dr. Steven King

 Advanced Foot Orthotic

Photos from https://www.kingetics.com/

Mechanics of the Product

Video from https://www.kingetics.com/

💥 STUDENT FOCUSED *§* LAND GRANT 🚳 RESEARCH UNIVERSITY

NDSU MECHANICAL ENGINEERING

Past Semester's Work

 Phase 1 – Gurney Construction

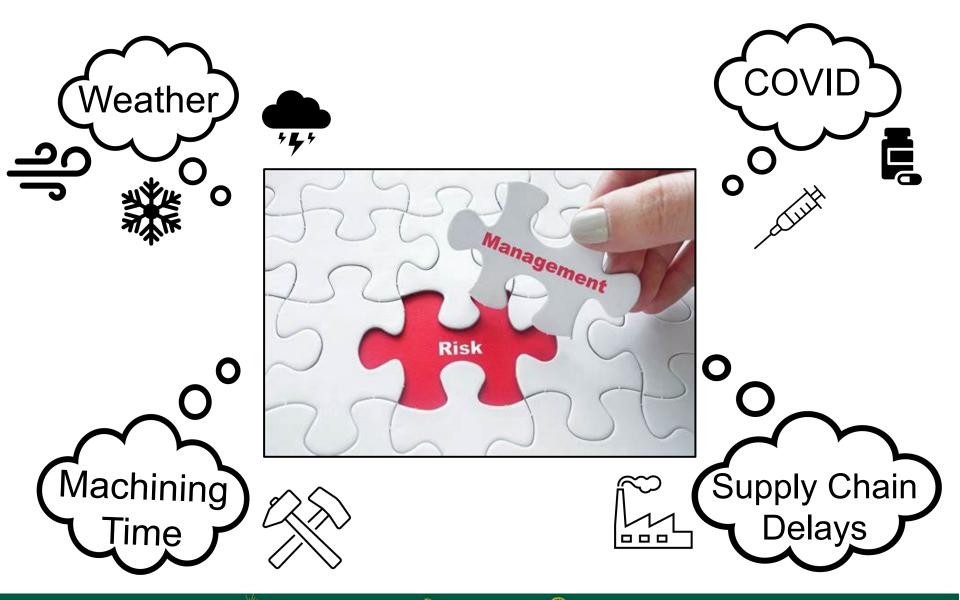
Phase 2 –
 Mechanics Testing

Phase III: Objectives

Goals:

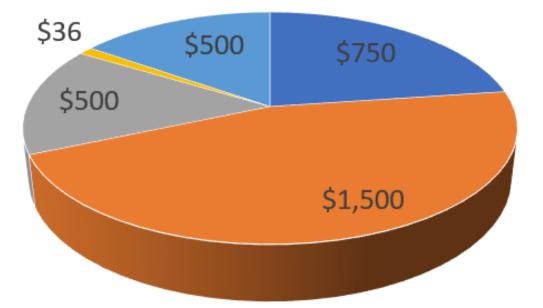
- Optimize Cradle
 - Design
 - Materials Selection
- Create a mold for injection molding
- Machine Prototypes and Run Tests

Constraints:


- One Shoe Size
- Each component should be a separate mold
- Spring Plate = 1 Piece
- Consider dynamic loading

Phase III: Gantt Chart

				Month				
Tasks:	Completed	Start	Finish	Jan. Feb. Mar. Apr. May Aug. Sept. Oct. Nov. Dec.				
A. Planning and Organizing	100%	1/8/22	2/25/22					
B. Resources and Budgeting	100%	2/12/22	3/12/22					
C. Materials Research and Selection	100%	2/21/22	3/25/22					
D. Cradle and Spring Plate Design	100%	2/28/22	4/8/22					
E. Mold Design	25%	4/4/22	9/15/22					
F. Spring Semester Presentation	100%	4/25/22	5/6/22					
G. Revised Planning and Budget	0%	9/13/22	9/20/22					
H. Prototype Testing	0%	9/20/22	11/22/22					
I. Fall Presentations	0%	11/22/22	12/9/22					


Risk Plan

Total Budget: \$3,286

Cradle Composite Mold Materials Machining Tools Presentation Props Miscellaneous

Bill of Materials

https://img.alicdn.com/imgextra/i3/600000000292/O1 CN01HSkyHN1E1mGpg7Brn_!!600000000292-0tbvideo.jpg

https://themetalsfactory.com/product/aluminiumproducts/blocks/6061-aluminium-blocks/ Composite Pellets Mold Machining

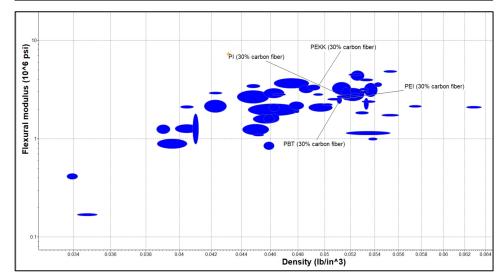
- Aluminum Blocks
- End Mills

Poster Board

https://epictool.ca/end-mills/

Materials Selection Criteria

- Current Material: Delrin (polyoxymethylene)
 - Match flexibility and density
 - Improve strength and lifetime
 - Delrin has low endurance/high creep
- Selection Criteria:


NDSU MECHANICAL ENGINEERING

- Injection moldable, thermoplastic
- Carbon-fiber filler
- Flexural Modulus: ~450 ksi
- Compressive Yield: >10 ksi
- Density: <0.054 lb/in³
- Minimize moisture absorption
- Minimize cost

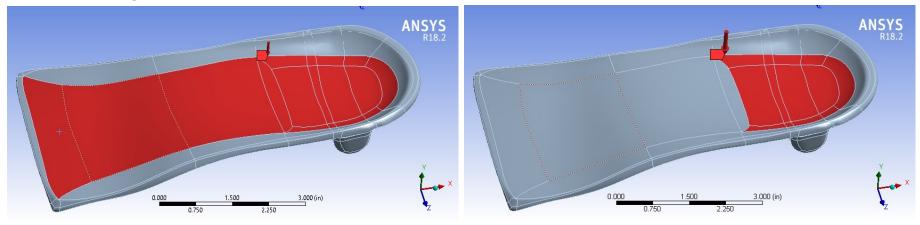
Granta EDUPack

- Granta EDUpack
 - Used to analyze different materials
 - Properties can easily be compared and filtered
 - Rough price estimates are also listed

Composition overview Compositional summary (i)							
Homopolymer of (CH2-O)n (from formaldehyde o	or trioxane)						
Material family	(i)	Plastic (th	ermo	nlastic se	mi-crystalline)		
Base material	(i)	Plastic (thermoplastic, semi-crystalline) POM (Polyoxymethylene / acetal homopolymer)					
Polymer code	()	POM					
Composition detail (polymers and natu	ural material	s)					
Polymer	<u>(</u>)	100			%		
Price							
Price	i	* 0.685	-	0.989	USD/lb		
Price per unit volume	i	* 60.3	-	88.3	USD/ft^3		
Physical properties							
Density	i	0.0509	-	0.0517	lb/in^3		
Mechanical properties							
Young's modulus	i	0.4	-	0.521	10^6 psi		
Young's modulus with temperature Parameters: Temperature = 73.4°F	(j)	0.474	-	0.474	10^6 psi		

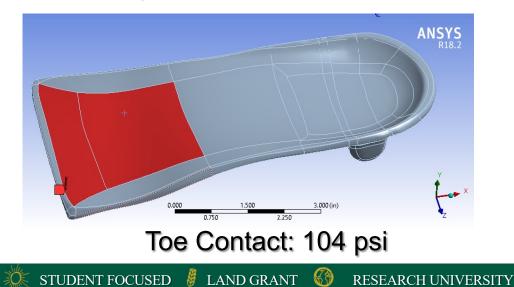
Materials: Screening

	Modulus	Compressive Yield	Density	Cost	Moldability	Fatigue Limit	Moisture Absorption	Total
POM - Acetal	0	0	0	0	0	+	0	1
<mark>РОМ - 30%С</mark>	+	+	0	+	0	0	+	4
PI - 30%C	+	+	0	0	-	+	+	3
PLA - 30%G	+	+	0	+	0	0	0	3
PEI-PCE - 30%G	+	+	0	+	+	0	+	5
<mark>PEI - 30%C</mark>	+	+	+	-	0	+	+	4
PCT - 40%G	+	+	0	+	+	+	+	6
PLA - 30%N	0	+	+	-	+	+	0	3
<mark>PP - 20%C</mark>	0	+	+	0	0	+	+	4



FEA - Overview

- Goals:
 - Evaluate remaining material candidates
 - Verify feasibility of design modifications
- Methodology:
 - Static structural analysis
 - 800-lb applied impact force
 - 3 loading cases for each material


FEA - Loading

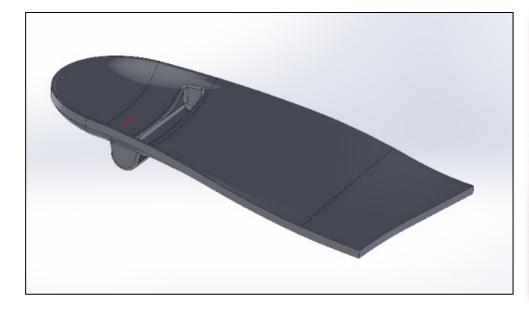
Loading cases:

Full Foot Contact: 44 psi

Heel Contact: 164 psi

FEA - Results

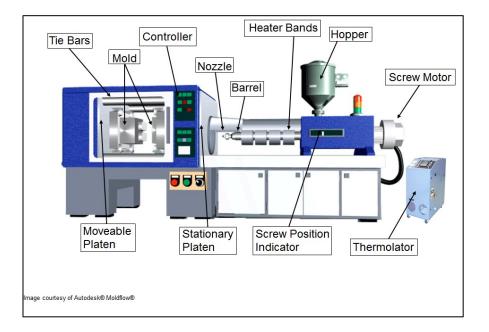
	Heel C	Contact	Full Foo	t Contact	Toe Contact		
	Factor of Safety	Deflection	Factor of Safety	Deflection	Factor of Safety	Deflection	
PEI – 30% carbon fiber	5.39	0.010 in	5.14	0.060 in	4.46	0.101 in	
POM – 30% carbon fiber	1.33	0.028 in	1.27	0.122 in	1.11	0.203 in	
PP – 20% carbon fiber	1.38	0.033 in	1.59	0.141 in	1.14	0.335 in	


NDSU	MECHANICAL ENGINEERING

Criteria	Weight	PEI – 30% Carbon Fiber		POM – 30% Carbon Fiber		PP – 20% Carbon Fiber	
Factor of Safety	25%	5	1.25	3	0.75	4	1.00
Deflection	20%	5	1.00	3	0.60	4	0.80
Density	20%	3	0.60	3	0.60	5	1.00
Moldability	15%	2	0.30	4	0.60	3	0.45
Cost	15%	1	0.15	3	0.45	5	0.75
Moisture Absorption	5%	3	0.15	3	0.15	5	0.25
Total		3.45		3.15		4.25	

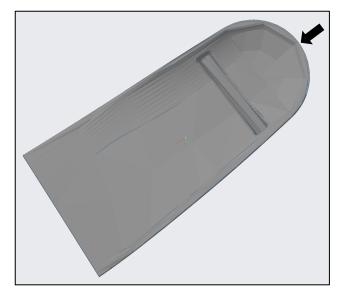
Design Decisions

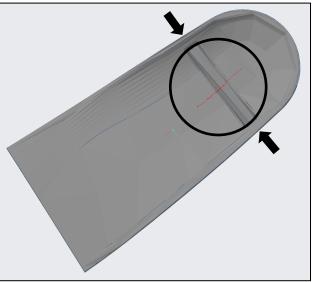
- Size and Surface Area: 32 in² max
 - Uniform Thickness Concerns
 - Consistent Round Dimensions
 - Addition of Ribs



Injection Mold Designs

- Injection Molding Stage (Next Semester)
 - Planning on only molding the right-foot cradle
 - Mold will be able to produce one cradle per cycle
 - NDSU is helping with the molding process




Injection Mold Design

Location of Gates

NDSU MECHANICA

- Important for proper and aligned mold flow
- Improper mold flow
 leads to knit lines and
 other issues
- Ejector Pin Location
 - If possible, on back of part

- Wrap up design modifications
- Verify material performance in ANSYS with revised model
- Perform mold flow analysis
- Work with Rob Sailer to design and machine a prototype mold
- Produce and test prototype parts

Acknowledgements

- NDSU ME Department
 - Rob Sailer
- Rocket Composites
 Paul Hewitt
- RTP Company
 - Jacob Kafer
 - Chris Diebel

Questions?